Front Tracking Approximations for Slow Erosion
نویسندگان
چکیده
In this paper we study an integro-differential equation describing slow erosion, in a model of granular flow. In this equation the flux is non local and depends on x, t. We define approximate solutions by using a front tracking technique, adapted to this special equation. Convergence of the approximate solutions is established by means of suitable a priori estimates. In turn, these yield the global existence of entropy solutions in BV. Such entropy solutions are shown to be unique. We also prove the continuous dependence on initial data and on the erosion function, for the approximate as well as for the exact solutions. This establishes the well-posedness of the Cauchy problem.
منابع مشابه
Front Tracing Approximations for Slow Erosion
In this paper we study an integro-differential equation that arises in modeling slow erosion of granular flow. We construct piecewise constant approximate solutions, using a front tracing technique. Convergence of the approximate solutions is established through proper a priori estimates, which in turn gives global existence of BV solutions. Furthermore, continuous dependence on initial data an...
متن کاملLipschitz Semigroup for an Integro–differential Equation for Slow Erosion
In this paper we study an integro-differential equation describing granular flow dynamics with slow erosion. This nonlinear partial differential equation is a conservation law where the flux contains an integral term. Through a generalized wave front tracking algorithm, approximate solutions are constructed and shown to converge strongly to a Lipschitz semigroup.
متن کاملNew Maximum Power Point Tracking Technique Based on P&O Method
In the most described maximum power point tracking (MPPT) methods in the literatures, the optimal operation point of the photovoltaic (PV) systems is estimated by linear approximations. However, these approximations can lead to less optimal operating conditions and significantly reduce the performances of the PV systems. This paper proposes a new approach to determine the maximum power point (M...
متن کاملPareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope
Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...
متن کاملErosion and mobility in granular collapse over sloping beds
[1] We describe laboratory experiments of granular material flowing over an inclined plane covered by an erodible bed, designed to mimic erosion processes of natural flows travelling over deposits built up by earlier events. Two controlling parameters are the inclination of the plane and the thickness of the erodible layer. We show that erosion processes can increase the flowmobility (i.e., run...
متن کامل